Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-29713363

RESUMO

Propolis is a bee-collected natural product that has been proven to have various bioactivities. This study tested the effects of a Mexican propolis on streptozotocin-induced diabetes mellitus in a murine model. The results showed that an ethanolic extract of propolis of Chihuahua (EEPCh) significantly inhibited increases in blood glucose and the loss of body weight in diabetic mice. EEPCh increased plasma insulin levels in STZ-diabetic mice, whereas, in untreated diabetic mice, there was no detection of insulin. EEPCh had a high antioxidant capacity (SA50 = 15.75 µg/mL), which was directly related to the concentrations of total phenols (314 mg GAE/g of extract) and flavonoids (6.25 mg QE/g of extract). In addition, increased activities of the enzymes superoxide dismutase, catalase, and glutathione peroxidase were observed in diabetic mice treated with EEPCh. Compounds such as pinocembrin, quercetin, naringin, naringenin, kaempferol, acacetin, luteolin, and chrysin were identified by HPLC-MS analysis. This investigation demonstrated that propolis of Chihuahua possesses hypoglycaemic and antioxidant activities and can alleviate symptoms of diabetes mellitus in mice. These effects may be directly related to the chemical composition of propolis, as most of the compounds identified in propolis are reportedly active in terms of the different parameters evaluated in this work.

2.
Afr J Tradit Complement Altern Med ; 14(2): 188-197, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28573235

RESUMO

BACKGROUND: Cutaneous leishmaniasis lacks effective and well-tolerated treatments. The current therapies mainly rely on antimonial drugs that are inadequate because of their poor efficacy. Traditional medicine offers a complementary alternative for the treatment of various diseases. Additionally, several plants have shown success as anti-leishmanial agents. Therefore, we sought to evaluate the in vitro and in vivo activity of MEBA against Leishmania mexicana. MATERIALS AND METHODS: Methanolic extract of B. aptera was obtained by macetration, after we determined in vitro anti-leishmanial activity of MEBA by MTT assay and the induced apoptosis in promastigotes by flow cytometry. To analyze the in vivo anti-leishmanial activity, we used infected mice that were treated and not treated with MEBA and we determined the levels of cytokines using ELISA. The phytochemical properties were determined by CG-MS and DPPH assay. RESULTS: We determined of LC50 of 0.408 mg/mL of MEBA for in vitro anti-leishmanial activity. MEBA induced apoptosis in promastigotes (15.3% ± 0.86). Treated mice exhibited smaller lesions and contained significantly fewer parasites than did untreated mice; in addition, we found that IFN-γ and TNF-α increased in the sera of MEBA-treated mice. GC-MS analysis showed that podophyllotoxin was the most abundant compound. Evaluation of the activity by DPPH assay demonstrated an SC50 of 11.72 µg/mL. CONCLUSION: Based on the above data, it was concluded that MEBA is a good candidate in the search for new anti-leishmanial agents.


Assuntos
Bursera/química , Leishmania mexicana , Leishmaniose Cutânea/tratamento farmacológico , Fitoterapia , Extratos Vegetais/uso terapêutico , Animais , Feminino , Interferon gama/sangue , Leishmaniose Cutânea/sangue , Leishmaniose Cutânea/parasitologia , Medicina Tradicional , Camundongos Endogâmicos BALB C , Casca de Planta , Extratos Vegetais/farmacologia , Podofilotoxina/análise , Podofilotoxina/farmacologia , Podofilotoxina/uso terapêutico , Fator de Necrose Tumoral alfa/sangue
3.
J Ethnopharmacol ; 204: 1-7, 2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28392457

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jatropha neopauciflora Pax is an endemic species to Mexico, and its latex is used in traditional medicine to treat mouth infections when there are loose teeth and to heal wounds. In this research, we evaluated the antimicrobial activity, wound healing efficacy and chemical characterization of J. neopauciflora latex in a murine model. MATERIALS AND METHODS: The antibacterial activity was determined using Gram positive and negative strains, the antifungal activity was determined using yeast and filamentous fungi, and the wound healing efficacy of the latex was determined using the tensiometric method. The anti-inflammatory activity was evaluated using the plantar oedema model in rats, administering the latex orally and topically. Cytotoxic activity was determined in vitro in two different cell lines. Antioxidant capacity, total phenolics, total flavonoids, reducing carbohydrates and latex proteins were quantified. The latex analysis was performed by High Performance Liquid Chromatography (HPLC). Finally, molecular exclusion chromatography was performed. RESULTS: The latex demonstrated antibacterial activity. The most sensitive strains were Gram positive bacteria, particularly S. aureus (MIC=2mg/mL), and the latex had bacteriostatic activity. The latex did not show antifungal activity. The latex demonstrated a wound-healing efficacy, even the positive control (Recoveron). The orally administered latex demonstrated the best anti-inflammatory activity and was not toxic to either of the 2 cell lines. The latex had a high antioxidant capacity (SA50=5.4µg/mL), directly related to the total phenolic (6.9mg GAE/mL) and flavonoid (12.53µg QE/mL) concentration. The carbohydrate concentration was 18.52µg/mL, and fructose was the most abundantly expressed carbohydrate in the latex (14.63µg/mL, 79.03%). Additionally, the latex contained proteins (7.62µg/mL) in its chemical constitution. As secondary metabolites, the HPLC analysis indicated the presence of phenols and flavonoids. CONCLUSIONS: The J. neopauciflora latex promotes the wound healing process by avoiding microorganism infections, inhibiting inflammation and acting as an antioxidant.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Jatropha , Látex/farmacologia , Células 3T3-L1 , Animais , Anti-Infecciosos/química , Anti-Inflamatórios/química , Linhagem Celular Tumoral , Flavonoides/análise , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Humanos , Látex/química , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Fenóis/análise , Proteínas de Plantas/análise , Ratos Wistar , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...